वृत्तों ${x^2} + {y^2} + x - y + 2 = 0$ व $3{x^2} + 3{y^2} - 4x - 12 = 0$ के मूलाक्ष का समीकरण है
$2{x^2} + 2{y^2} - 5x + y - 14 = 0$
$7x - 3y + 18 = 0$
$5x - y + 14 = 0$
इनमें से कोई नहीं
यदि वृत्त $x^2+y^2-2 \sqrt{2} x-6 \sqrt{2} y+14=0$ के व्यासों में से एक व्यास, वृत्त $( x -2 \sqrt{2})^2+( y -2 \sqrt{2})^2= r ^2$ की जीवा है, तो $r^2$ का मान है
यदि परवलय $y^{2}=4 x$ की नाभिलम्ब जीवा, दो वृत्तों, $C_{1}$ तथा $C _{2}$ की उभयनिष्ठ जीवा है, जबकि वृत्तों में से प्रत्येक का अर्धव्यास $2 \sqrt{5}$ है, तो वृत्तों $C _{1}$ एवं $C _{2}$ के केन्द्र बिन्दुओं के बीच की दूरी है
माना कि $C_1$ एक वृत्त है जिसकी त्रिज्या $1$ और केंद्र मूल बिंदु है। माना कि $C_2$ एक वृत्त है जिसकी त्रिज्या $r$, जहाँ $1 < r < 3$ है, और केंद्र बिंदु $A=(4,1)$ है। $C_1$ एवं $C_2$ की दो भिन्न उभयनिष्ट स्पर्श रेखाएं (distinct common tangents) $P Q$ एवं $S T$ खींची जाती हैं। स्पर्श रेखा $P Q$, वृत्त $C_1$ को $P$ पर और वृत्त $C_2$ को $Q$ पर स्पर्श करती है। स्पर्श रेखा $S T$, वृत्त $C_1$ को $S$ पर और वृत्त $C_2$ को $T$ पर स्पर्श करती है। रेखा खंडों $P Q$ एवं $S T$ के मध्य बिन्दुओं को मिलाकर एक रेखा बनाई जाती है जो $x$-अक्ष को बिंदु $B$ पर मिलती है। यदि $A B=\sqrt{5}$, तब $r^2$ का मान है
उस वृत्त का समीकरण जो बिन्दु $(-2, 4)$ तथा वृत्त ${x^2} + {y^2} - 2x - 6y + 6 = 0$ और रेखा $3x + 2y - 5 = 0$ के प्रतिच्छेद बिन्दु से गुजरता है, होगा
${x^2} + {y^2} + 2gx + c = 0$, ($c < 0$ के लिये) द्वारा समाक्ष वृत्त का निकाय प्रस्तुत करता है