The equation of state of some gases can be expressed as $\left( {P + \frac{a}{{{V^2}}}} \right)\,(V - b) = RT$. Here $P$ is the pressure, $V$ is the volume, $T$ is the absolute temperature and $a,\,b,\,R$ are constants. The dimensions of $'a'$ are
$M{L^5}{T^{ - 2}}$
$M{L^{ - 1}}{T^{ - 2}}$
${M^0}{L^3}{T^0}$
${M^0}{L^6}{T^0}$
Match List $I$ with List $II$
List $I$ | List $II$ |
$(A)$ Young's Modulus $(Y)$ | $(I)$ $\left[ M L ^{-1} T ^{-1}\right]$ |
$(B)$ Co-efficient of Viscosity $(\eta)$ | $(II)$ $\left[ M L ^2 T ^{-1}\right]$ |
$(C)$ Planck's Constant $(h)$ | $(III)$ $\left[ M L ^{-1} T ^{-2}\right]$ |
$(D)$ Work Function $(\phi)$ | $(IV)$ $\left[ M L ^2 T ^{-2}\right]$ |
Choose the correct answer from the options given below:
In a particular system of units, a physical quantity can be expressed in terms of the electric charge $c$, electron mass $m_c$, Planck's constant $h$, and Coulomb's constant $k=\frac{1}{4 \pi \epsilon_0}$, where $\epsilon_0$ is the permittivity of vacuum. In terms of these physical constants, the dimension of the magnetic field is $[B]=[c]^\alpha\left[m_c\right]^\beta[h]^\gamma[k]^\delta$. The value of $\alpha+\beta+\gamma+\delta$ is. . . . .
The speed of light $(c)$, gravitational constant $(G)$ and planck's constant $(h)$ are taken as fundamental units in a system. The dimensions of time in this new system should be
Position of a body with acceleration '$a$' is given by $x = K{a^m}{t^n},$ here $t$ is time. Find dimension of $m$ and $n$.