उस सरल रेखा का समीकरण जो $( - a,\;0)$ से गुजरती है एवं अक्षों के साथ ‘$T$’ क्षेत्रफल का त्रिभुज बनाती है, है

  • A

    $2Tx + {a^2}y + 2aT = 0$

  • B

    $2Tx - {a^2}y + 2aT = 0$

  • C

    $2Tx - {a^2}y - 2aT = 0$

  • D

    इनमें से कोई नहीं

Similar Questions

किसी आयत की एक भुजा $4x + 7y + 5 = 0$ के अनुदिश है। इसके दो शीर्ष $(-3, 1)$ व $(1, 1)$ हैं, तो अन्य तीन भुजाओं के समीकरण हैं

  • [IIT 1978]

एक बिन्दु इस प्रकार गति करता है, कि इस बिन्दु तथा बिन्दुओं $(1, 5)$ तथा $ (3, -7)$ से बने त्रिभुज का क्षेत्रफल $21$ वर्ग इकाई है, तब बिन्दु का बिन्दुपथ होगा

रेखाओं ${a_1}x + {b_1}y + {c_1} = 0$,${a_1}x + {b_1}y + {d_1} = 0$ व ${a_2}x + {b_2}y + {c_2} = 0$, ${a_2}x + {b_2}y + {d_2} = 0$ से निर्मित समान्तर चतुभुज का क्षेत्रफल होगा

कार्तीय तल का मूल बिन्दु $O$ है । आपको वास्तविक संख्यायें $b, d > 0$ दी गई हैं |रेखाखण्ड $O P$, जहां $P(r, \theta)$ एक चर बिंदु है, रेखा $r \sin \theta=b$ को बिन्दु $Q$ पर इस प्रकार काटता है कि $P Q=d \mid$ तब ऐसे सभी $P(r, \theta)$ बिन्दुओं का बिंदुपथ होगा:

  • [KVPY 2014]

वर्ग के विपरीत शीर्ष $(1, 2)$ व $(3, 8)$ हैं, तो बिन्दु $(1, 2)$ से गुजरने वाले विकर्ण का समीकरण है