9.Straight Line
hard

दर्शाइए कि एक गतिमान बिंदु, जिसकी दो रेखाओं $3 x-2 y=5$ और $3 x+2 y=5$ से दूरीयाँ समान है, का पथ एक रेखा है।

Option A
Option B
Option C
Option D

Solution

Given lines are

${3x – 2y = 5}$……$(1)$

and    ${3x + 2y = 5}$…..$(2)$

Let $(h, k)$ is any point, whose distances from the lines $(1) $ and $(2)$ are equal. Therefore

$\frac{{|3h – 2k – 5|}}{{\sqrt {9 + 4} }} = \frac{{|3h + 2k – 5|}}{{\sqrt {9 + 4} }}$

${\text{or }}|3h – 2k – 5| = |3h + 2k – 5|$

${{\text{which gives }}3h – 2k – 5 = 3h + 2k – 5{\text{ or }} – (3h – 2k – 5)}$

${ = 3h + 2k – 5}$

Solving these two relations we get $k=0$ or $h=\frac{5}{3} .$ Thus, the point $(h, k)$ satisfies the equations $y=0$ or $x=\frac{5}{3},$ which represent straight lines. Hence, path of the point equidistant from the lines $(1)$ and $(2)$ is a straight line.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.