The equation of the circle which passes through the origin, has its centre on the line $x + y = 4$ and cuts the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$ orthogonally, is
${x^2} + {y^2} - 2x - 6y = 0$
${x^2} + {y^2} - 6x - 3y = 0$
${x^2} + {y^2} - 4x - 4y = 0$
None of these
If the circles ${x^2} + {y^2} = 4,{x^2} + {y^2} - 10x + \lambda = 0$ touch externally, then $\lambda $ is equal to
If one common tangent of the two circles $x^2 + y^2 = 4$ and ${x^2} + {\left( {y - 3} \right)^2} = \lambda ,\lambda > 0$ passes through the point $\left( {\sqrt 3 ,1} \right)$, then possible value of $\lambda$ is
The equation of radical axis of the circles $2{x^2} + 2{y^2} - 7x = 0$ and ${x^2} + {y^2} - 4y - 7 = 0$ is
The number of common tangents to the circles ${x^2} + {y^2} - 4x - 6y - 12 = 0$ and ${x^2} + {y^2} + 6x + 18y + 26 = 0$ is
Two circles ${S_1} = {x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ and ${S_2} = {x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ cut each other orthogonally, then