मूल अक्षों के सापेक्ष दीर्घवृत्त जिसकी नाभिलम्ब $8$ है और जिसकी उत्केन्द्रता $\frac{1}{{\sqrt 2 }}$है, का समीकरण होगा
$\frac{{{x^2}}}{{18}} + \frac{{{y^2}}}{{32}} = 1$
$\frac{{{x^2}}}{8} + \frac{{{y^2}}}{9} = 1$
$\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{32}} = 1$
$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{24}} = 1$
दीर्घवृत्त $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ की उत्केन्द्रता है
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
$b=3, c=4,$ केंद्र मूल बिंदु पर, नाभियाँ $x$ अक्ष पर
उस दीर्घवृत्त, जिसके अक्ष निर्देशांक अक्ष है, जो बिन्दु $(-3,1)$ से होकर जाता है तथा जिसकी उत्केन्द्रता $\sqrt{\frac{2}{5}}$ है, का समीकरण है:
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की लम्बवत् स्पर्श रेखाओं के प्रतिच्छेद बिन्दु का बिन्दुपथ है
किसी दीर्घवृत्त की नाभियों के बीच की दूरी $6$ व लघुअक्ष $8$ है तो इसकी उत्केन्द्रता होगी