- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
medium
उस बिन्दु $P(\alpha ,\,\beta )$ का बिन्दुपथ जो इस प्रकार गमन करता है कि रेखा $y = \alpha x + \beta $, अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की स्पर्श रेखा है, है
A
परवलय
B
अतिपरवलय
C
दीर्घवृत्त
D
वृत्त
(AIEEE-2005)
Solution
(b) यदि $y = mx + c$ अतिपरवलय की स्पर्श है तब ${c^2} = {a^2}{m^2} – {b^2}$.
यहाँ ${\beta ^2} = {a^2}{\alpha ^2} – {b^2}$
अत: बिन्दु $P(a, b)$ का बिन्दुपथ ${a^2}{x^2} – {y^2} = {b^2}$ है,
जो कि अतिपरवलय है।
Standard 11
Mathematics