वृत्त ${x^2} + {y^2} + 4x - 4y + 4 = 0$ पर उस रेखा का समीकरण जो धनात्मक अक्षों से बराबर अन्त:खण्ड काटती है, होगा

  • A

    $x + y + 2\sqrt 2 = 0$

  • B

    $x + y = 2\sqrt 2 $

  • C

    $x + y = 2$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि किसी वक्र के बिन्दु $P(x,y)$ पर स्पर्श रेखा मूल बिन्दु को बिन्दु $P$ से मिलाने वाली रेखा के लम्बवत् हो, तो वक्र है

वृत्त ${x^2} + {y^2} = {a^2}$ के किस बिन्दु पर $y = x + a\sqrt 2 $ वृत्त की स्पर्श रेखा है

माना वत्त $x ^{2}+ y ^{2}-2 x +4 y +1=0$ का केन्द्र $B$ है। माना वत्त के दो बिंदुओ $P$ तथा $Q$ पर स्पर्श रेखाओं का प्रतिच्छेदन बिंदु $A (3,1)$ है। तो $8.$ $\left(\frac{\text { area } \triangle \mathrm{APQ}}{\text { area } \triangle \mathrm{BPQ}}\right)$ बराबर है ........ |

  • [JEE MAIN 2021]

यदि रेखा $lx + my + n = 0$ वृत्त ${(x - h)^2} + {(y - k)^2} = {a^2}$ की स्पर्श रेखा हो, तो

वृत्त ${x^2} + {y^2} = 4$ के बिन्दु $(1,\sqrt 3 )$ पर खींची गयी स्पर्श रेखा एवं अभिलम्ब एवं धनात्मक $x$-अक्ष से बने त्रिभुज का क्षेत्रफल है

  • [IIT 1989]