वृत्त ${x^2} + {y^2} = 50$ के उन बिन्दुओं पर, जहाँ रेखा $x + 7 = 0$ इसको काटती है, स्पर्श रेखाओं के समीकरण हैं

  • A

    $7x \pm y + 50 = 0$

  • B

    $7x \pm y - 5 = 0$

  • C

    $y \pm 7x + 5 = 0$

  • D

    $y \pm 7x - 5 = 0$

Similar Questions

एक वृत्त $C _1$ मूल बिंदु $O$ से होकर जाता है तथा धनात्मक $x$-अक्ष पर इसका व्यास 4 है। रेखा $y =$ $2 x$ से वृत्त $C _1$ की जीवा $OA$ बनती है। माना $C _2$ वह वृत्त है, जिसका एक व्यास $OA$ है। यदि बिंदु $A$ पर $C _2$ की स्पर्श रेखा $x$-अक्ष को $P$ पर तथा $y$ अक्ष को $Q$ पर मिलती है, तो $QA : AP$ बराबर है:

  • [JEE MAIN 2022]

एक वत्त के बिन्दु $(2,5)$ पर स्पर्श रेखा का समीकरण $2 x - y +1=0$ है तथा वत्त का केन्द्र रेखा $x -2 y =4$ पर है, तो वत्त की त्रिज्या है

  • [JEE MAIN 2021]

माना $\mathrm{O}$ मूलबिन्दु है तथा $\mathrm{OP}$ और $\mathrm{OQ}$ वृत्त $x^2+y^2-6 x+4 y+8=0$ के बिन्दुओं $P$ तथा $Q$ पर स्पर्श रेखाएं हैं। यदि त्रिभुज $\mathrm{OPQ}$ का परिवृत्त, बिन्दु $\left(\alpha, \frac{1}{2}\right)$ से होकर जाती है, तो $\alpha$ का एक मान है

  • [JEE MAIN 2023]

मूल बिन्दु से वृत्त ${x^2} + {y^2} - 2ax - 2by + {b^2} = 0$ पर खींची गई स्पर्श रेखाएँ परस्पर लम्बवत् हैं, यदि

माना बिंदु $P (0, h )$ से वृत्त $x^{2}+y^{2}=16$ पर खींची गई स्पर्श रेखाएँ $x$-अक्ष को बिंदुओं $A$ तथा $B$ पर मिलती हैं। यदि $\triangle APB$ का क्षेत्रफल न्यूनतम है, तो $h$ बराबर है

  • [JEE MAIN 2015]