સમીકરણોની જોડ $2x + y + z = \beta $ , $10x - y + \alpha z = 10$ અને  $4x+ 3y-z =6$ ને એકાકી ઉકેલ હોય તો તે  . . . . પર આધારિત હોય.

  • A

    બંને  $\alpha $ અને  $\beta $

  • B

    $\beta $ કે  $\alpha $ પૈકી એકપણ નહીં.

  • C

    માત્ર $\beta $ 

  • D

    માત્ર $\alpha $

Similar Questions

જો $k_1$, $k_2$ એ $k$ ની મહતમ અને ન્યૂનતમ કિમતો છે કે જેથી સમીકરણોની સહંતિ  $x + ky = 1$ ; $kx + y = 2$;  $x + y = k$  એ સુસંગત થાય છે તો $k_1^2 + k_2^2$ મેળવો.

સમીકરણની સંહતિ $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ નો ઉકેલ ખાલીગણ હોય તો $\alpha $ કિમત મેળવો.

  • [AIEEE 2005]

જો $\omega $ એ એકનું ઘનમૂળ હોય તો સમીકરણ $\left| {\begin{array}{*{20}{c}}
  {x + 2}&\omega &{{\omega ^2}} \\ 
  \omega &{x + 1 + {\omega ^2}}&1 \\ 
  {{\omega ^2}}&1&{x + 1 + \omega } 
\end{array}} \right| = 0$ નું બીજ મેળવો.

જો સમીકરણ સંહતિ $x+y+z=6 \,; \,2 x+5 y+\alpha z=\beta  \,; \, x+2 y+3 z=14$ એ અનંત ઉકેલ ધરાવે છે તો  $\alpha+\beta$ ની કિમંત મેળવો.

  • [JEE MAIN 2022]

$\Delta ABC$ માં , જો $\left| {\,\begin{array}{*{20}{c}}1&a&b\\1&c&a\\1&b&c\end{array}\,} \right| = 0$, તો ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $