यदि $A + B + C = {180^o},$ तो $\frac{{\tan A + \tan B + \tan C}}{{\tan A\,.\,\tan B\,.\,\tan C}} = $

  • A

    $0$

  • B

    $2$

  • C

    $1$

  • D

    $-1$

Similar Questions

यदि $A + B + C = {270^o},$ तब  $\cos \,2A + \cos 2B + \cos 2C + 4\sin A\,\sin B\,\sin C = $

माना कि $S=\left\{x \in(-\pi, \pi): x \neq 0, \pm \frac{\pi}{2}\right\}$ है। समुच्चय $S$ में समीकरण $\sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-\cot x)=0$ के सभी भिन्न हलों (all distinct solutions) का योग (sum) है

  • [IIT 2016]

त्रिभुज  $ABC$ में $\sin A + \sin B + \sin C$ का मान है

यदि $\frac{{2\sin \alpha }}{{\{ 1 + \cos \alpha + \sin \alpha \} }} = y,$ हो,  तो $\frac{{\{ 1 - \cos \alpha + \sin \alpha \} }}{{1 + \sin \alpha }}  $ बराबर है

$\cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right) \text { का मान }$ है

  • [JEE MAIN 2020]