વિધેય $f(x) = {x^3} - 6{x^2} + ax + b$ એ $[1, 3]$ માં રોલ ના પ્રમેયનું પાલન કરે છે તો $a$ અને $b$ મેળવો.
$11, -6$
$-6, 11$
$-11, 6$
$6, -11$
આપેલ પૈકી ક્યૂ વિધેય રોલના પ્રમેયનું પાલન કરે છે ?
વિધેય $f(x) = {e^{ - 2x}}sin 2x$ એ $\left( {0,{\pi \over 2}} \right)$ માં આપલે છે. વાસ્તવિક સંખ્યા $c \in \left( {0,{\pi \over 2}} \right)\,,$ મેળવો કે જેથી $f'\,(c) = 0$ માટે રોલના પ્રમેયનું પાલન કરે છે.
ધારો કે $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ અચળ ન હોય તેવો દ્રિવિકલનીય વિધેય છે જ્યાં $\mathrm{g}\left(\frac{1}{2}\right)=\mathrm{g}\left(\frac{3}{2}\right)$. જો વાસ્તવિક મૂલ્યવાળું વિધેય $F$ એ $f(x)=\frac{1}{2}[g(x)+\mathrm{g}(2-x)]$ ] પ્રમાણે વ્યાખ્યાયિત થાય, તો:
જો $ f(x) = x^{\alpha} logx, x > 0, f(0) = 0 $ અને $ x \in [0, 1]$ રોલના પ્રમેયનું પાલન કરે, હોય તો $\alpha =$ કેટલા થાય ?
ધારો કે $ f$ એવું વિધેય છે કે બધા વાસ્તવિક $x$ માટે સતત અને વિકલનીય છે.જો બધા $x \in [2, 4] $ માટે $ f(2) = -4 $ અને $f(x) \geq 6$ હોય, તો.......