સમીકરણ $\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ નો વ્યાપક ઉકેલ મેળવો.
$n\pi + \frac{\pi }{8}$
$\frac{{n\pi }}{2} + \frac{\pi }{8}$
${( - 1)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$
$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$
જો $2{\tan ^2}\theta = {\sec ^2}\theta , $ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$-4 \pi \leq x \leq 4 \pi$ માટે $|\cos x|=\sin x$ ના ઉકેલની સંખ્યા મેળવો.
$a\cos x + b\sin x = c,$ નો વ્યાપક ઉકેલ મેળવો. (કે જ્યાં $a,\,\,b,\,\,c$ એ અચળ છે )
જો $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$x$ ની ............ કિમતોના ગણ માટે $cosx > sinx,$ થાય
જ્યાં $x\, \in \,\,\left( {\frac{\pi }{2}\,,\,\frac{{3\pi }}{2}} \right)$