Trigonometrical Equations
normal

The general solution of $a\cos x + b\sin x = c,$ where $a,\,\,b,\,\,c$ are constants

A

$x = n\pi + {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)$

B

$x = 2n\pi - {\tan ^{ - 1}}\left( {\frac{b}{a}} \right)$

C

$x = 2n\pi - {\tan ^{ - 1}}\left( {\frac{b}{a}} \right) \pm {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)$

D

$x = 2n\pi + {\tan ^{ - 1}}\left( {\frac{b}{a}} \right) \pm {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)$

Solution

(d) $\frac{a}{{\sqrt {{a^2} + {b^2}} }}\cos x + \frac{b}{{\sqrt {{a^2} + {b^2}} }}\sin x = \frac{c}{{\sqrt {{a^2} + {b^2}} }}$

$ \Rightarrow $ $\cos \left( {x – {{\cos }^{ – 1}}\frac{a}{{\sqrt {{a^2} + {b^2}} }}} \right) = \frac{c}{{\sqrt {{a^2} + {b^2}} }}$

$ \Rightarrow $ $x – {\cos ^{ – 1}}\frac{a}{{\sqrt {{a^2} + {b^2}} }} = {\cos ^{ – 1}}\frac{c}{{\sqrt {{a^2} + {b^2}} }}$

General solution is,

$x – {\cos ^{ – 1}}\frac{a}{{\sqrt {{a^2} + {b^2}} }} = 2n\pi \pm {\cos ^{ – 1}}\frac{c}{{\sqrt {{a^2} + {b^2}} }}$

or $x = 2n\pi \pm {\cos ^{ – 1}}\frac{c}{{\sqrt {{a^2} + {b^2}} }} + {\cos ^{ – 1}}\frac{a}{{\sqrt {{a^2} + {b^2}} }}$

$x =  2n\pi + {\tan ^{ – 1}}\frac{b}{a} \pm {\cos ^{ – 1}}\frac{c}{{\sqrt {{a^2} + {b^2}} }}$.

Trick : Put $a = b = c = 1$, then

$\cos \left( {x – \frac{\pi }{4}} \right) = \cos \frac{\pi }{4}$

$ \Rightarrow $ $x = 2n\pi + \frac{\pi }{4} \pm \frac{\pi }{4}$

which is given by option $(d).$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.