The general value of $\theta $  that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in  I)$

  • A

    $2n\pi  - \frac{\pi }{6}$

  • B

    $n\pi  - \frac{\pi }{6}$

  • C

    $n\pi  - {\left( { - 1} \right)^n}\frac{\pi }{6}$

  • D

    $n\pi  + \frac{\pi }{3}$

Similar Questions

The solution of the equation $4{\cos ^2}x + 6$${\sin ^2}x = 5$

If $\alpha ,\,\beta ,\,\gamma ,\,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity $k$ , then the value of $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ is equal to 

The number of values of $\alpha $ in $[0, 2\pi]$ for which $2\,{\sin ^3}\,\alpha  - 7\,{\sin ^2}\,\alpha  + 7\,\sin \,\alpha  = 2$ , is

  • [JEE MAIN 2014]

If $sin\, \theta = sin\, \alpha$ then $sin\, \frac{\theta }{3}$ =

If $cosx + secx =\, -2$, then for a $+ve$ integer $n$, $cos^n x + sec^n x$ is