The gradient of the tangent line at the point $(a\cos \alpha ,a\sin \alpha )$ to the circle ${x^2} + {y^2} = {a^2}$, is
$\tan \alpha $
$\tan (\pi - \alpha )$
$\cot \alpha $
$ - \cot \alpha $
The equations of the tangents to the circle ${x^2} + {y^2} - 6x + 4y = 12$ which are parallel to the straight line $4x + 3y + 5 = 0$, are
Length of the tangent drawn from any point on the circle ${x^2} + {y^2} + 2gx + 2fy + {c_1} = 0$ to the circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$ is
A tangent $P T$ is drawn to the circle $x^2+y^2=4$ at the point $P(\sqrt{3}, 1)$. A straight line $L$, perpendicular to $P T$ is a tangent to the circle $(x-3)^2+y^2=1$.
$1.$ A common tangent of the two circles is
$(A)$ $x=4$ $(B)$ $y=2$ $(C)$ $x+\sqrt{3} y=4$ $(D)$ $x+2 \sqrt{2} y=6$
$2.$ A possible equation of $L$ is
$(A)$ $x-\sqrt{3} y=1$ $(B)$ $x+\sqrt{3} y=1$ $(C)$ $x-\sqrt{3} y=-1$ $(D)$ $x+\sqrt{3} y=5$
Give the answer question $1$ and $2.$
The equation of the circle having the lines $y^2 - 2y + 4x - 2xy = 0$ as its normals $\&$ passing through the point $(2 , 1)$ is :
If the point $(1, 4)$ lies inside the circle $x^2 + y^2-6x - 10y + p = 0$ and the circle does not touch or intersect the coordinate axes, then the set of all possible values of $p$ is the interval