If the tangent at $\left( {1,7} \right)$ to the curve ${x^2} = y - 6$ touches the circle ${x^2} + {y^2} + 16x + 12y + c = 0$ then the value of $c$ is:
$185$
$85$
$95$
$195$
If the length of tangent drawn from the point $(5, 3)$ to the circle ${x^2} + {y^2} + 2x + ky + 17 = 0$ be $7$, then $k$ =
$S_1$ and $S_2$ are two concentric circles of radii $1$ and $2$ respectively. Two parallel tangents to $S_1$ cut off an arc from $S_2$. The length of the arc is
If $OA$ and $OB$ be the tangents to the circle ${x^2} + {y^2} - 6x - 8y + 21 = 0$ drawn from the origin $O$, then $AB =$
If the equation of the tangent to the circle ${x^2} + {y^2} - 2x + 6y - 6 = 0$ parallel to $3x - 4y + 7 = 0$ is $3x - 4y + k = 0$, then the values of $k$ are
The line $y = mx + c$ will be a normal to the circle with radius $r$ and centre at $(a, b)$, if