- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
hard
If the tangent at $\left( {1,7} \right)$ to the curve ${x^2} = y - 6$ touches the circle ${x^2} + {y^2} + 16x + 12y + c = 0$ then the value of $c$ is:
A
$185$
B
$85$
C
$95$
D
$195$
(JEE MAIN-2018)
Solution

Equation of tangert at $(1,7)$ to ${x^2} = y – 6$ is
$2x – y + 5 = 0$
Now, perpentdicular from center $O(-8,-6)$to
$2x – y + 5 = 0$ should be equal to radium of the circle
$\left| {\frac{{ – 16 + 6 + 5}}{{\sqrt 5 }}} \right| = \sqrt {64 + 36 – C} $
$ \Rightarrow \sqrt 5 = \sqrt {100 – c} \Rightarrow c = 95$
Standard 11
Mathematics