${(1 + x)^{2n + 2}}$ के प्रसार में महत्तम गुणांक है
$\frac{{(2n)!}}{{{{(n!)}^2}}}$
$\frac{{(2n + 2)!}}{{{{\{ (n + 1)!\} }^2}}}$
$\frac{{(2n + 2)!}}{{n!(n + 1)!}}$
$\frac{{(2n)!}}{{n!(n + 1)!}}$
${\left( {{y^2} + \frac{c}{y}} \right)^5}$ के विस्तार में $y$ का गुणांक होगा
${(a + 2x)^n}$ के विस्तार में $r$ वाँ पद होगा
यदि $(1+x)^n$ के प्रकार में तीन क्रमागत पदों के गुणांकों का अनुपात $1: 5: 20$ है, तो चौथे पद का गुणांक है
यदि ${(1 + x)^{2n + 2}}$ के प्रसार में मध्य पद का गुणांक $p$ है तथा ${(1 + x)^{2n + 1}}$ के प्रसार में मध्य पदों के गुणांक $q$ तथा $r$ हैं, तब
यदि धन पूर्णाकों $m$ तथा $n$ के लिए
$(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots .+a_{m-n} y^{m+n}$ तथा $a_{1}=a_{2}=10$ हैं, तो $(m+n)$ बराबर है