7.Binomial Theorem
medium

${(1 + x)^{2n + 1}}$ ના વિસ્તરણમાં મહતમ સહગુણક મેળવો.

A

$\frac{{(2n + 1)\,!}}{{n!(n + 1)!}}$

B

$\frac{{(2n + 2)!}}{{n!(n + 1)!}}$

C

$\frac{{(2n + 1)!}}{{{{[(n + 1)!]}^2}}}$

D

$\frac{{(2n)!}}{{{{(n!)}^2}}}$

Solution

(a) $\frac{{{T_{r + 1}}}}{{{T_r}}} = \frac{{N – r + 1}}{r}.x$

Here, $N = 2n +1$==> $\frac{{{T_{r + 1}}}}{{{T_r}}} = \frac{{2n + 2 – r}}{r}.x$

$\therefore $ ${T_{r + 1}} \ge {T_r}$

$ \Rightarrow $ $2n + 2 – r \ge r$

$ \Rightarrow $ $2n + 2 \ge 2r$ ==> $r \le n + 1$

$\therefore \,\,\,\,\,r = n$${T_{r + 1}} = {T_{n + 1}} = {\,^{2n + 1}}{C_{n + 1}}$

$ = \frac{{(2n + 1)\,!}}{{(n + 1)!\,n!}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.