7.Binomial Theorem
medium

${(1 + x)^{2n + 1}}$ के विस्तार में महत्तम गुणांक का मान होगा

A

$\frac{{(2n + 1)\,!}}{{n!(n + 1)!}}$

B

$\frac{{(2n + 2)!}}{{n!(n + 1)!}}$

C

$\frac{{(2n + 1)!}}{{{{[(n + 1)!]}^2}}}$

D

$\frac{{(2n)!}}{{{{(n!)}^2}}}$

Solution

$\frac{{{T_{r + 1}}}}{{{T_r}}} = \frac{{N – r + 1}}{r}.x$

यहाँ, $N = 2n +1$ ==> $\frac{{{T_{r + 1}}}}{{{T_r}}} = \frac{{2n + 2 – r}}{r}.x$

$\therefore $   ${T_{r + 1}} \ge {T_r}$

$ \Rightarrow $ $2n + 2 – r \ge r$ $ \Rightarrow $ $2n + 2 \ge 2r$ ==> $r \le n + 1$

$\therefore \,\,\,\,\,r = n$

${T_{r + 1}} = {T_{n + 1}} = {\,^{2n + 1}}{C_{n + 1}}$$ = \frac{{(2n + 1)\,!}}{{(n + 1)!\,n!}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.