The houses on one side of a road are numbered using consecutive even numbers. The sum of the numbers of all the houses in that row is $170$ . If there are at least $6$ houses in that row and $a$ is the number of the sixth house, then
$2 \leq a \leq 6$
$8 \leq a \leq 12$
$14 \leq a \leq 20$
$22 < a \leq 30$
Given sum of the first $n$ terms of an $A.P.$ is $2n + 3n^2.$ Another $A.P.$ is formed with the same first term and double of the common difference, the sum of $n$ terms of the new $A.P.$ is
The Fibonacci sequence is defined by
$1 = {a_1} = {a_2}{\rm{ }}$ and ${a_n} = {a_{n - 1}} + {a_{n - 2}},n\, > \,2$
Find $\frac{a_{n+1}}{a_{n}},$ for $n=1,2,3,4,5$
Let $a , b , c$ be in arithmetic progression. Let the centroid of the triangle with vertices $( a , c ),(2, b)$ and $(a, b)$ be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If $\alpha, \beta$ are the roots of the equation $ax ^{2}+ bx +1=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is ....... .
If $n$ is the smallest natural number such that $n+2 n+3 n+\ldots+99 n$ is a perfect square, then the number of digits of $n^2$ is
If ${a_1} = {a_2} = 2,\;{a_n} = {a_{n - 1}} - 1\;(n > 2)$, then ${a_5}$ is