The houses on one side of a road are numbered using consecutive even numbers. The sum of the numbers of all the houses in that row is $170$ . If there are at least $6$ houses in that row and $a$ is the number of the sixth house, then
$2 \leq a \leq 6$
$8 \leq a \leq 12$
$14 \leq a \leq 20$
$22 < a \leq 30$
In an $\mathrm{A.P.}$ if $m^{\text {th }}$ term is $n$ and the $n^{\text {th }}$ term is $m,$ where $m \neq n$, find the ${p^{th}}$ term.
Find the $25^{th}$ common term of the following $A.P.'s$
$S_1 = 1, 6, 11, .....$
$S_2 = 3, 7, 11, .....$
Four numbers are in arithmetic progression. The sum of first and last term is $8$ and the product of both middle terms is $15$. The least number of the series is
If the sum and product of the first three term in an $A.P$. are $33$ and $1155$, respectively, then a value of its $11^{th}$ tern is
Let $V_{\mathrm{r}}$ denote the sum of the first $\mathrm{r}$ terms of an arithmetic progression $(A.P.)$ whose first term is $\mathrm{r}$ and the common difference is $(2 \mathrm{r}-1)$. Let
$T_{\mathrm{I}}=V_{\mathrm{r}+1}-V_{\mathrm{I}}-2 \text { and } \mathrm{Q}_{\mathrm{I}}=T_{\mathrm{r}+1}-\mathrm{T}_{\mathrm{r}} \text { for } \mathrm{r}=1,2, \ldots$
$1.$ The sum $V_1+V_2+\ldots+V_n$ is
$(A)$ $\frac{1}{12} n(n+1)\left(3 n^2-n+1\right)$
$(B)$ $\frac{1}{12} n(n+1)\left(3 n^2+n+2\right)$
$(C)$ $\frac{1}{2} n\left(2 n^2-n+1\right)$
$(D)$ $\frac{1}{3}\left(2 n^3-2 n+3\right)$
$2.$ $\mathrm{T}_{\mathrm{T}}$ is always
$(A)$ an odd number $(B)$ an even number
$(C)$ a prime number $(D)$ a composite number
$3.$ Which one of the following is a correct statement?
$(A)$ $Q_1, Q_2, Q_3, \ldots$ are in $A.P.$ with common difference $5$
$(B)$ $\mathrm{Q}_1, \mathrm{Q}_2, \mathrm{Q}_3, \ldots$ are in $A.P.$ with common difference $6$
$(C)$ $\mathrm{Q}_1, \mathrm{Q}_2, \mathrm{Q}_3, \ldots$ are in $A.P.$ with common difference $11$
$(D)$ $Q_1=Q_2=Q_3=\ldots$
Give the answer question $1,2$ and $3.$