9.Straight Line
hard

રેખા $2x + 3y = 12$ એ $x$ - અક્ષને  $A$ અને $y$ - અક્ષને $B$ બિંદુમાં મળે છે.જો બિંદુ $(5, 5)$ માંથી પસાર થતી રેખાએ $AB$ ને લંબ છે અને $x$ - અક્ષ , $y$ - અક્ષ અને $AB$ ને અનુક»મે  $C, D$ અને $E$ માં મળે છે.જો $O$ એ ઊગમબિંદુ હોય તો $OCEB$ નું ક્ષેત્રફળ મેળવો.

A

$23$ $sq. units$

B

$\frac{{23}}{2}sq.units$

C

$\frac{{23}}{3}sq.units$

D

એકપણ નહી.

(IIT-1976)

Solution

(c) Here $ O$ is the point $(0,\,0)$. The line $2x + 3y = 12$ meets the $y$-axis at $B$ and so $B$ is the point $(0,4)$. The equation of any line perpendicular to the line $2x + 3y = 12$ and passes through $(5, 5)$ is $3x – 2y = 5$……$(i)$

The line $(i)$ meets the $x$-axis at $C$ and so co-ordinates of $C$ are$\left( {\frac{5}{3},\,0} \right).$Similarly the coordinates of $E$ are $(3, 2)$ by solving the line $AB$ and $(i)$.

Thus $O\,(0, 0)$, $C\left( {\frac{5}{3},0} \right)$, $E(3,\,2)$ and $B \,(0, 4)$. Now the area of figure $OCEB = $ area of $\Delta OCE$ + area of $\Delta OEB = \frac{{23}}{3}sq.$ units.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.