उस बिन्दु का बिन्दुपथ, जिसकी किन्हीं दो परस्पर लम्बवत् रेखाओं से दूरियों का योग $2$ इकाई है (प्रथम चतुर्थांश में), है
$x + y + 2 = 0$
$x + y = 2$
$x - y = 2$
इनमें से कोई नहीं
$\Delta PQR$ के शीर्ष $P (2,1), Q (-2,3)$ और $R (4,5)$ हैं। शीर्ष $R$ से जाने वाली माध्यिका का समीकरण ज्ञात कीजिए।
यदि रेखाओं $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$ के निर्देशांक अक्षो के बीच रेखाखंडो के मध्य बिंदुओं द्वारा बने वक्र पर एक बिंदु $\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$ है, तो $\alpha$ बराबर है :
बिन्दुओं $(1, 0)$ व $(2\cos \theta ,2\sin \theta )$ को जोड़ने वाली रेखा को $2 : 3$ के अनुपात में अन्त:विभाजित करने वाले बिन्दु का बिन्दुपथ होगा
एक त्रिभुज $ABC$ में, $A$ के निर्देशांक $(1,2)$ हैं तथा $B$ तथा $C$ से होकर जाने वाली माध्चिकाओं के समीकरण क्रमशः $x + y =5$ तथा $x =4$ हैं, तो $\Delta ABC$ का क्षेत्रफल (वर्ग इकाइयों में) है
समान लम्याई और आकार $(shape)$ की दो मोमर्बत्तियां हैं, दोनों समान दर से जलती है. पहली मोमथती $5$ घटें में और दूसरी मोमथत्ती $3$ घंटे में पूरी जल जाती है. दोनों मोमबत्तियां एक साथ जलाई जाती है. कितनें मिनटों के बाद पहली मोमबत्ती की लम्बाई दूसरी मोमथत्ती की तीन गुनी रह जाएगी ?