चित्र में सदिशों $\overrightarrow{ OA }, \overrightarrow{ OB }$ तथा $\overrightarrow{ OC }$ के परिमाण समान है। $x$ - अक्ष के साथ $\overrightarrow{ OA }+\overrightarrow{ OB }-\overrightarrow{ OC }$ की दिशा होगी।

981-902

  • [JEE MAIN 2021]
  • A

    $\tan ^{-1} \frac{(1-\sqrt{3}-\sqrt{2})}{(1+\sqrt{3}+\sqrt{2})}$

  • B

    $\tan ^{-1} \frac{(\sqrt{3}-1+\sqrt{2})}{(1+\sqrt{3}-\sqrt{2})}$

  • C

    $\tan ^{-1} \frac{(\sqrt{3}-1+\sqrt{2})}{(1-\sqrt{3}+\sqrt{2})}$

  • D

    $\tan ^{-1} \frac{(1+\sqrt{3}-\sqrt{2})}{(1-\sqrt{3}-\sqrt{2})}$

Similar Questions

जब सदिश $\overrightarrow{\mathrm{B}}$ से सदिश $\overrightarrow{\mathrm{A}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ को घटाने पर यह $2 \hat{\mathrm{j}}$ के बराबर एक सदिश देता है। तब सदिश $\overrightarrow{\mathrm{B}}$ का परिमाण होगा:

  • [JEE MAIN 2023]

एक व्यक्ति $30 \,m$ उत्तर दिशा में इसके पश्चात् $20\, m$ पूर्व दिशा में तथा अंत में $30\sqrt 2 \,m$ दक्षिण-पश्चिम दिशा में चलता है। प्रारंभिक बिन्दु से व्यक्ति का विस्थापन होगा

तीन लड़कियाँ $200\, m$ त्रिज्या वाली वृत्तीय बर्फीली सतह पर स्केटिंग कर रही हैं । वे सतह के किनारे के बिंदु $P$ से स्केटिंग शुरू करती हैं तथा $P$ के व्यासीय विपरीत बिंदु $Q$ पर विभिन्न पथों से होकर पहुँचती हैं जैसा कि चित्र में दिखाया गया है । प्रत्येक लड़की के विस्थापन सदिश का परिमाण कितना है ? किस लड़की के लिए यह वास्तव में स्केट किए गए पथ की लंबाई के बराबर है ।

यदि $| A + B |=| A |+| B |$ तब $\mathop A\limits^ \to $व $\mathop B\limits^ \to $ के बीच कोण है

किसी बिन्दु पर कार्य करने वाले दो बलों के परिमाणों का योग $18$ है तथा उनके परिणामी का परिमाण $12$ है। यदि परिणामी छोटे परिमाण के बल से $90^°$ के कोण पर हो तो बलों के परिमाण होंगे

  • [AIEEE 2002]