चित्र में सदिशों $\overrightarrow{ OA }, \overrightarrow{ OB }$ तथा $\overrightarrow{ OC }$ के परिमाण समान है। $x$ - अक्ष के साथ $\overrightarrow{ OA }+\overrightarrow{ OB }-\overrightarrow{ OC }$ की दिशा होगी।

981-902

  • [JEE MAIN 2021]
  • A

    $\tan ^{-1} \frac{(1-\sqrt{3}-\sqrt{2})}{(1+\sqrt{3}+\sqrt{2})}$

  • B

    $\tan ^{-1} \frac{(\sqrt{3}-1+\sqrt{2})}{(1+\sqrt{3}-\sqrt{2})}$

  • C

    $\tan ^{-1} \frac{(\sqrt{3}-1+\sqrt{2})}{(1-\sqrt{3}+\sqrt{2})}$

  • D

    $\tan ^{-1} \frac{(1+\sqrt{3}-\sqrt{2})}{(1-\sqrt{3}-\sqrt{2})}$

Similar Questions

दो सदिशों $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ का परिणामी सदिश $\mathop A\limits^ \to $ के लम्बवत् है तथा इसका परिमाण सदिश $\mathop B\limits^ \to $ के परिमाण का आधा है। $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण ....... $^o$ होगा

एक कमरे की विमाऐं $10\,m \times 12\,m \times 14\,m$ हैं। एक मक्खी एक किनारे से प्रारम्भ करके विकणÊय रूप से विपरीत किनारे पर जाती है। इसके विस्थापन का परिमाण .......... $m$ होगा

दो सदिशों के परिणामी के अधिकतम होने के लिए, उनके मध्य कितना कोण ....... $^o$ होना चाहिए

चित्रानुसार बलों $\overrightarrow{ OP }, \overrightarrow{ OQ }, \overrightarrow{ OR }, \overrightarrow{ OS }$ तथा $\overrightarrow{ OT }$ का परिणामी लगभग होता है।

[मान लिजिए: $\sqrt{3}=1.7, \sqrt{2}=1.4$ । दिया है $\hat{i}$ तथा $\hat{ j }$ क्रमश: $x$ तथा $y$ अक्ष के अनुदिश इकाई सदिश हैं]

  • [JEE MAIN 2021]

तीन बलों के प्रभाव में एक वस्तु विराम अवस्था में है। जिनमें से दो बल $\mathop {{F_1}}\limits^ \to = 4\hat i,\,\mathop {{F_2}}\limits^ \to = 6\hat j$ हैं, तो तीसरा बल होगा