$15$ प्रेक्षणों का माध्य और मानक विचलन क्रमश: $8$ और $3$ पाया गया है। इसकी पुन जॉच करने पर यह पाया गया की, प्रेक्षणों में 20 को 5 के रूप में गलत पड़ा गया था, तब सही प्रसरण बराबर है -
$7$
$20$
$19$
$17$
माना $n$ प्रेक्षण $x_{1}, x_{2}, \ldots, x_{n}$ है तथा उनका समान्तर माध्य $\bar{x}$ तथा प्रसरण $\sigma^{2}$ है।
कथन $1:\, 2 x_{1} , 2 x_{2}, \ldots , 2 x_{n}$ का प्रसरण $4 \sigma^{2}$ है।
कथन $2:\, 2 x_{1} , 2 x_{2} \ldots . . , 2 x_{n}$ का समान्तर माध्य $4 \bar{x}$ है।
पाँच प्रेक्षणों का माध्य तथा मानक विचलन क्रमशः $9$ तथा $0$ हैं। यदि उनमें से एक प्रेक्षण इस प्रकार बदला जाए कि नया माध्य $10$ हो जाए, तो उनका मानक विचलन है
किसी चर $x$ का मानक विचलन है। तब चर $\frac{{ax + b}}{c}$ का मानक विचलन है, (जहाँ $a, b, c$ अचर है)
$10$ प्रेक्षणों $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$ के लिए $\sum_{\mathrm{i}=1}^{10}\left(\mathrm{x}_{\mathrm{i}}-\alpha\right)=2$ तथा $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$ हैं, जहाँ $\alpha$ तथा $\beta$ धनात्मक पूर्णांक है। माना इन प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\frac{6}{5}$ तथा $\frac{84}{25}$ है। तो $\frac{\beta}{\alpha}$ बराबर है:
यदि आँकड़ों का प्रत्येक प्रेक्षण, जिसका प्रसरण ${\sigma ^2}$ है, $\lambda$ से बढ़ाया जाता है, तब नये समूह का प्रसरण है....