एक सरल लोलक की लम्बाई का मान $2 \mathrm{~mm}$ शुद्धता के साथ $20 \mathrm{~cm}$ मापा जाता है। $50$ दोलनों के लिए $1$ सेंकड शुद्धता के साथ मापा समय $40$ सेंकड है। इस माप से गुरूत्वीय त्वरण के मापन की शुद्धता $\mathrm{N} \%$ है। $\mathrm{N}$ का मान है :
$4$
$8$
$6$
$5$
एक भौतिक प्राचल $(Physical parameter) a$ का मान $ [a =$ ${b^\alpha }{c^\beta }/{d^\gamma }{e^\delta }]$ सम्बन्ध के प्रयोग से $b, c, d $ तथा $e$ प्राचलों को मापकर निर्धारित किया जाता है। यदि $b, c, d $ तथा $e$ में अधिकतम त्रुटियाँ क्रमश: ${b_1}\%$, ${c_1}\%$, ${d_1}\%$ तथा ${e_1}\%$, हैं तो प्रयोग द्वारा a के मापन में अधिकतम त्रुटि होगी
ऊष्मा के जूल नियम के अनुसार उत्पन्न ऊष्मा $H = {I^2}\,Rt$ जहाँ $I$ धारा, $R$ प्रतिरोध तथा $t$ समय है। यदि $I, R$ तथा $t$ के मापन में त्रुटियाँ क्रमश: $3\%, 4\%$ तथा $6\%$ हैं तो $H$ के मापन में त्रुटि है
किसी वस्तु के पदार्थ का आपेक्षिक घनत्व इसे पहले वायु में फिर पानी में तोल कर मापा गया। यदि वायु में भार ($5.00 \pm 0.05$) न्यूटन तथा पानी में भार ($4.00 \pm 0.05$) न्यूटन है, तो आपेक्षिक घनत्व में अधिकतम प्रतिशत त्रुटि होगी
यदि सभी स्वतंत्र राशियों (independent quantities) की मापन त्रुटियाँ (measurement errors) ज्ञात हो, तो किसी निर्भर राशि (dependent quantity) की त्रुटि का परिकलन (calculation) किया जा सकता है। इस परिकलन में श्रेणी प्रसार (series expansion) का प्रयोग किया जाता है और इस प्रसार को त्रुटि (error) के पहले घात (first power) पर रून्डित (truncate) किया जाता है। उदाहरण स्वरूप, सम्बन्ध $z=x / y$ में यदि $x, y$ और $z$ की त्रुटियाँ क्रमशः $\Delta x, \Delta y$ और $\Delta z$ हों, तो
$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$
$\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$ का श्रेणी प्रसार, $\Delta y / y$ में पहले घात तक, $1 \mp(\Delta y / y)$ है। स्वतंत्र राशियों की आपेक्षिक त्रुटियाँ (relative errors) सदैव जोड़ी जाती हैं। इसलिए $z$ की त्रुटि होगी
$\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) .$
उपरोक्त परिकलन में $\Delta x / x \ll 1, \Delta y / y \ll 1$ माने गये हैं। इसलिए इन राशियों की उच्चतर घातें (higher powers) उपेक्षित हैं।
($1$) एक विमा-रहित (dimensionless) राशि $a$ को माप कर, एक अनुपात (ratio) $r=\frac{(1-a)}{(1+a)}$ का परिकलन करना है। यदि $a$ की मापन की त्रुटि $\Delta a$ है $(\Delta a / a \ll 1)$, तो $r$ के परिकलन की त्रुटि $\Delta r$ क्या होगी ?
$(A)$ $\frac{\Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(B)$ $\frac{2 \Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(C)$ $\frac{2 \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$ $(D)$ $\frac{2 \mathrm{a} \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$
($2$) एक प्रयोग के आरंभ में रेडियोएक्टिव नाभिकों की संख्या $3000$ है। प्रयोग के पहले $1.0$ सेकंड में $1000 \pm 40$ नाभिकों का क्षय हो जाता है $\mid$ यदि $|x| \ll 1$ हो, तो $x$ के पहले घात तक $\ln (1+x)=x$ है। क्षयांक (decay constant) $\lambda$ के निर्धारण में त्रुटि $\Delta \lambda, s^{-1}$ में, है
$(A) 0.04$ $(B) 0.03$ $(C) 0.02$ $(D) 0.01$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$