ગણ $\{a, b, c, d\}$ પરનું સંબંધ $R = \{(a, b), (b, c), (b, d)\}$ સામ્ય સંબંંધ બને તે માટે ઓછામાં ઓછી સંખ્યામાં ઉમેરવામા આવતા ધટકોની સંખ્યા $............$ છે.
$11$
$12$
$19$
$13$
ગણ $\mathrm{A}=\{1,2,3,4,5,6\}$ પર વ્યાખ્યાયિત સંબંધ $\mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{y}$ એ $\mathrm{x}$ વડે વિભાજ્ય છે. $\} $ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
ધારોકે $A=\{1,2,3,4\}$ અને સંબંધ એ ગણ $A \times A$ પર $R=\{((a, b),(c, d)): 2 a+3 b=4 c+5 d\}$ મુજબ વ્યાખ્યાયિત થયેલ છે. તો $R$ ના ધટકોની સંખ્યા $......$ છે.
જો $S$ એ વાસ્તવિક સંખ્યા ગણ હોય તો ગણ $S$ પરનો સંબંધ $R = \{(a, b) : 1 + ab > 0\}$ એ . . . ..
The સંબંધ "congruence modulo $m$" is
$XY$ સમતલની બધી જ રેખાઓનો ગણ $L$ લો અને $L$ પર સંબંધ $R = \{ \left( {{L_1},{L_2}} \right):$ રેખા ${L_1}$ એ રેખા ${{L_2}}$, ને સમાંતર છે; વડે વ્યાખ્યાયિત છે. સાબિત કરો કે $R$ સામ્ય સંબંધ છે. જે રેખાઓ $y=2 x+4$ સાથે સંબંધ $R$ દ્વારા સંબંધિત હોય તેવી તમામ રેખાઓનો ગણ શોધો. નોંધ : સ્વીકારી લો કે, પ્રત્યેક રેખા પોતાને સમાંતર છે.