वृत्त ${x^2} + {y^2} - 3x - 6y - 10 = 0$ के बिन्दु $(-3, 4)$ पर अभिलम्ब का समीकरण है

  • A

    $2x + 9y - 30 = 0$

  • B

    $9x - 2y + 35 = 0$

  • C

    $2x - 9y + 30 = 0$

  • D

    $2x - 9y - 30 = 0$

Similar Questions

माना कि $S$ एक वृत्त (circle) है जो $x y$-समतल (plane) में समीकरण (equation) $x^2+y^2=4$ के द्वारा परिभाषित है।

($1$) माना कि $E_1 E_2$ और $F_1 F_2$ वृत्त $S$ की ऐसी जीवायें (chords) हैं जो बिंदु $P_0(1,1)$ से गुजरती हैं और क्रमश: $x$-अक्ष (axis) व $y$-अक्ष के समान्तर (parallel) हैं। माना कि $G_1 G_2, S$ की वह जीवा है जो $P_0$ से गुजरती है और जिसकी प्रवणता (slope) -$1$ है। माना कि $E_1$ और $E_2$ पर $S$ की स्पर्शियाँ (tangents) $E_3$ पर मिलती हैं, $F_1$ और $F_2$ पर $S$ की स्पर्शियाँ $F_3$ पर मिलती हैं, तथा $G_1$ और $G_2$ पर $S$ की स्पर्शियाँ $G_3$ पर मिलती हैं। तब वह वक्र (curve) जिस पर बिंदु $E_3, F_3$ और $G_3$ स्थित हैं, है

$(A)$ $x+y=4$ $(B)$ $(x-4)^2+(y-4)^2=16$ $(C)$ $(x-4)(y-4)=4$ $(D)$ $x y=4$

($2$) माना कि $P$ वृत्त $S$ पर स्थित एक ऐसा बिंदु है जिसके दोनों निर्देशांक (coordinates) धनात्मक (positive) हैं। माना कि वृत्त $S$ के बिंदु $P$ पर स्पर्शी (tangent) निर्देशांक अक्षों (coordinate axes) को बिन्दुओं $M$ और $N$ पर प्रतिच्छेद (intersects) करती है। तब वह वक्र (curve) जिस पर रेखाखंड (line segement) $M N$ का मध्य बिंदु (mid-point) अनिवार्य रूप से स्थित है, है

$(A)$ $(x+y)^2=3 x y$ $(B)$ $x^{2 / 3}+y^{2 / 3}=2^{4 / 3}$ $(C)$ $x^2+y^2=2 x y$ $(D)$ $x^2+y^2=x^2 y^2$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

  • [IIT 2018]

यदि एक रेखा मूल बिन्दु से गुजरे तथा वृत्त ${(x - 4)^2} + {(y + 5)^2} = 25$ को स्पर्श करे तो उसकी प्रवणता होनी चाहिये

यदि बिन्दु $O (0,0)$ तथा $P (1+\sqrt{5}, 2)$ पर वृत्त $x^2+y^2-2 x-4 y=0$ की खीची गई स्पर्श रेखाये है, जो बिन्दु $Q$ पर मिलती हो, तब त्रिभुज $OPQ$ का क्षेत्रफल होगा -

  • [JEE MAIN 2022]

वृत्त ${x^2} + {y^2} - 2x + 4y + 1 = 0$ पर बिन्दु $A(0,\,1)$ से खींची गयीं स्पर्शियाँ $AB$ व $AC$ हैं, तो बिन्दुओं $A, B$ व $C$ से जाने वाले वृत्त का समीकरण है

एक रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $P$ व $Q$ पर मिलती है। बिन्दु $P$ व $Q$ पर स्पर्श रेखायें खींची जाती हैं जो $R$ पर मिलती हैं, तो $R$ के निर्देशांक हैं