$x \in[0,2 \pi]$ की संख्या, जिनके लिए $\left|\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}-\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}\right|$ $=1$ है
$2$
$6$
$4$
$8$
यदि $\sin {\rm{ }}\left( {\frac{\pi }{4}\cot \theta } \right) = \cos {\rm{ }}\left( {\frac{\pi }{4}\tan \theta } \right)\,\,,$ तब $\theta = $
निम्नलिखित समीकरणों का मुख्य तथा व्यापक हल ज्ञात कीजिए
$\sec x=2$
यदि ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, तो $\theta $ के व्यापक मान हैं
यदि ${\sin ^2}\theta - 2\cos \theta + \frac{1}{4} = 0,$ तो $\theta $ का व्यापक मान है
यदि $1 + \cot \theta = {\rm{cosec}}\theta $, तो $\theta $ का व्यापक मान है