Trigonometrical Equations
hard

$x \in[0,2 \pi]$ की संख्या, जिनके लिए $\left|\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}-\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}\right|$ $=1$ है

A

$2$

B

$6$

C

$4$

D

$8$

(JEE MAIN-2016)

Solution

$|\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}-\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}|=1$

$\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}-\sqrt{2} \cos ^{4} x+18 \sin ^{2} x=\pm 1$

$\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}=\pm 1+\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}$

by squaring both the sides we will get $8$ solutions

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.