वृत्तों ${x^2} + {y^2} - 4x - 6y - 12 = 0$ तथा ${x^2} + {y^2} + 6x + 18y + 26 = 0$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है
$1$
$2$
$3$
$4$
वृत्त $C_1:(x-4)^2+(y-5)^2=4$ की जीवाओं के मध्य बिन्दुओं का बिन्दुपथ जो वृत्त $C_1$ के केन्द्र पर कोण $\theta_i$ बनाता है, जिसकी त्रिज्या $r_i$ है। यदि $\theta_1=\frac{\pi}{3}$, $\theta_3=\frac{2 \pi}{3}$ तथा $\mathrm{r}_1^2=\mathrm{r}_2^2+\mathrm{r}_3^2$ है, तो $\theta_2$ बराबर है:
यदि वृत्त $x^2+y^2-2 \sqrt{2} x-6 \sqrt{2} y+14=0$ के व्यासों में से एक व्यास, वृत्त $( x -2 \sqrt{2})^2+( y -2 \sqrt{2})^2= r ^2$ की जीवा है, तो $r^2$ का मान है
यदि वृत्त ${x^2} + {y^2} = {a^2}$ तथा ${x^2} + {y^2} - 2gx + {g^2} - {b^2} = 0$ एक-दूसरे को बाह्यत: स्पर्श करते हों, तो
उस वृत्त का समीकरण जो वृत्त ${x^2} + {y^2} - 6x + 6y + 17 = 0$ को बाह्यत: स्पर्श करता है एवं जिस पर रेखायें ${x^2} - 3xy - 3x + 9y = 0$ अभिलम्ब हैं, है
समाक्ष (coaxial) वृत्त निकाय ${x^2} + {y^2} - 6x - 6y + 4 = 0$, ${x^2} + {y^2} - 2x - 4y + 3 = 0$ का एक सीमान्त बिन्दु है