समीकरण
$\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0 \text {, }$
$x > 0$ के हलों की संख्या है ..............
$2$
$4$
$6$
$1$
मान लीजिये कि $a, b, c$ शुन्येतर $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $a+b+c=01$ यदि $q=a^2+b^2+c^2$ तथा $r=a^4+b^4+c^4$ हो तो, निम्नलिखित में से कौन सा कथन आवश्यक रूप से सही है?
मानलिया कि $x_1, x_2, \ldots, x_6$ बहुपद $x^6+2 x^5+4 x^4+8 x^3+16 x^2+32 x+64=0$ के मूल हैं तो
यदि $x$ धनात्मक है तो $5 + 4x - 4{x^2}$ का अधिकतम मान होगा
समीकरण ${e^{\sin x}} - {e^{ - \sin x}} - 4$ $ = 0$के वास्तविक मूलों की संख्या है
माना $\alpha=\max _{x \in R }\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ तथा $\beta=\min _{ n \in R }\left\{8^{2 \sin 3 n } \cdot 4^{4 \cos 3 x }\right\}$ हैं। यदि द्विघातीय समीकरण $8 x ^{2}+ bx + c =0$ के मूल $\alpha^{1 / 5}$ तथा $\beta^{1 / 5}$ है, तो $c - b$ का मान बराबर है