સમીકરણ $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ ઉકેલ મેળવો.
$\frac{1}{2}[n\pi + {( - 1)^n}{\sin ^{ - 1}}(3/4)]$
$n\pi + {( - 1)^n}{\sin ^{ - 1}}(3/4)$
$\frac{{n\pi }}{2} + {( - 1)^n}{\sin ^{ - 1}}(3/4)$
એકપણ નહિ.
જો સમીકરણ $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ ને ઓછામાં ઓછો એક વાસ્તવિક ઉકેલ હોય તો $k$ ની બધી પૂર્ણાક સંખ્યાઓનો સરવાળો મેળવો
જો $\cos 7\theta = \cos \theta - \sin 4\theta $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $\sqrt[3]{{\sin \theta - 1}} + \sqrt[3]{{\sin \theta }} + \sqrt[3]{{\sin \theta + 1}} = 0$ ના $[0,4\pi]$ માં ઉકેલોની સંખ્યા મેળવો.
સમીકરણ $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ નું સમાધાન કરે તેવી $\theta $ ની $[0, 2\pi]$ કેટલી કિમત છે.
જો $\alpha ,\,\beta ,\,\gamma ,\,\delta $ એ ચડતા ક્રમમા છે જેના sine કિમત ધન સંખ્યા $k$ જેટલી હોય તો $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ ની કિમત મેળવો.