સમીકરણ $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ ઉકેલ મેળવો.
$\frac{1}{2}[n\pi + {( - 1)^n}{\sin ^{ - 1}}(3/4)]$
$n\pi + {( - 1)^n}{\sin ^{ - 1}}(3/4)$
$\frac{{n\pi }}{2} + {( - 1)^n}{\sin ^{ - 1}}(3/4)$
એકપણ નહિ.
અહી $S$ એ અંતરાલ $[0,4 \pi]$ માં સમીકરણ $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ ઉકેલનો સરવાળો દર્શાવે છે તો $\frac{8 \mathrm{~S}}{\pi}$ ની કિમંત મેળવો.
જો $\tan 2\theta \tan \theta = 1$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
અંતરાલ $(0,10)$ માં સમીકરણ $\sin x=\cos ^{2} x$ ના ઉકેલોની સંખ્યા $\dots\dots$ છે.
જો $\alpha ,\,\beta ,\,\gamma $ અને $\delta $ એ સમીકરણ $\tan \left( {\theta + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ ના ઉકેલો હોય તો $tan\, \alpha + tan\, \beta + tan\, \gamma + tan\, \delta $ ની કિમત મેળવો.
જો $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.