Trigonometrical Equations
hard

સમીકરણ $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ ઉકેલ મેળવો.

A

$\frac{1}{2}[n\pi + {( - 1)^n}{\sin ^{ - 1}}(3/4)]$

B

$n\pi + {( - 1)^n}{\sin ^{ - 1}}(3/4)$

C

$\frac{{n\pi }}{2} + {( - 1)^n}{\sin ^{ - 1}}(3/4)$

D

એકપણ નહિ.

Solution

(a) $3(\sin \theta – \cos \theta ) = 4\sin \theta \cos \theta $

==> $3(\sin \theta – \cos \theta ) = 2\sin 2\theta $

Squaring both sides, we get $9(1 – S) = 4{S^2},$

where $S = \sin 2\theta $ or $4{S^2} + 9S – 9 = 0$.

$\therefore $ $\,(S + 3)\,(4S – 3) = 0$ or $S = \frac{3}{4}$ as $S \ne – 3$

or $\sin 2\theta = \frac{3}{4} = \sin \alpha $

$\therefore $ $2\theta = n\pi + {( – 1)^n}\alpha $

or $\theta = \frac{1}{2}\,\left[ {n\pi + {{( – 1)}^n}{{\sin }^{ – 1}}\left( {\frac{3}{4}} \right)} \right]$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.