बहुपदों $p: R \rightarrow R$, जिसके लिए $p(0)=0$, सभी $x \neq 0$ के लिए $p(x)>x^2$ तथा $p^{\prime \prime}(0)=$ $\frac{1}{2}$ है, की संख्या होगी :

  • [KVPY 2018]
  • A

    $0$

  • B

    $1$

  • C

    $1$ से अधिक पर सीमित

  • D

    अनंत

Similar Questions

यदि फलन $f(x) = {x^3} - 6a{x^2} + 5x$ अन्तराल $ [1, 2]$  के लिए लेगराँज मध्यमान प्रमेय की शर्तों को सन्तुष्ट करता है और वक्र $y = f(x)$ की $x = \frac{7}{4}$ पर स्पर्श रेखा, वक्र की कोटियों $x = 1$ व $x = 2$ से प्रतिच्छेद बिन्दुओं को मिलाने वाली जीवा के समान्तर है, तब $a$ का मान है

फलनों के लिए माध्यमान प्रमेय की अनुपयोगिता की जाँच कीजिए।:

$(i)$ $f(x)=[x]$ के लिए $x \in[5,9]$

$(ii)$ $f(x)=[x]$ के लिए $x \in[-2,2]$

$(iii)$ $f(x)=x^{2}-1$ के लिए $x \in[1,2]$

यदि फलनों $f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}$ तथा $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ का एक उभयानिष्ठ चरम बिन्दु है, तब $a+2 b+7$ बराबर है :

  • [JEE MAIN 2023]

फलन $f(x) = {(x - 3)^2}$ मध्यमान प्रमेय की सभी शर्तो को $ [3, 4] $ में सन्तुष्ट करता है। यदि $y = {(x - 3)^2}$ पर एक बिन्दु से खींची गई स्पर्श रेखा $ (3, 0) $ और $(4, 1)$  को मिलाने वाली जीवा के समान्तर हो, तो वह बिन्दु है

वास्तविक गुणांक वाले बहुपद $g ( x )$ के लिये, माना $g ( x )$ के विभिन्न वास्तविक मूलों की संख्या $m _{ g }$ से दर्शाते है। माना वास्तविक गुणांक वाले बहुपदों का समुच्चय $S$ है जो

$S=\left\{\left(x^2-1\right)^2\left(a_0+a_1 x+a_2 x^2+a_3 x^3\right): a_0, a_1, a_2, a_3 \in R\right\}$ द्वारा परिभाषित है। बहुपद $f$ के लिये, माना $f^{\prime}$ तथा $f^{\prime \prime}$ क्रमशः इसके प्रथम तथा द्वितीय कोटि अवकलज है। तब $\left( m f^{\prime}+ m f^{\prime \prime}\right)$, जहाँ $f \in S$ का न्यूनतम संभव मान होगा

  • [IIT 2020]