The number of real solution of equation $(\frac{3}{2})^x =  -x^2 + 5x-10$ :-

  • A

    $1$

  • B

    $2$

  • C

    $4$

  • D

    No solution

Similar Questions

If $x$ be real, the least value of ${x^2} - 6x + 10$ is

If $\alpha , \beta , \gamma$ are roots of equation $x^3 + qx -r = 0$ then the equation, whose roots are

$\left( {\beta \gamma  + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha  + \frac{1}{\beta }} \right),\,\left( {\alpha \beta  + \frac{1}{\gamma }} \right)$

All the points $(x, y)$ in the plane satisfying the equation $x^2+2 x \sin (x y)+1=0$ lie on

  • [KVPY 2011]

Suppose $m, n$ are positive integers such that $6^m+2^{m+n} \cdot 3^w+2^n=332$. The value of the expression $m^2+m n+n^2$ is

  • [KVPY 2010]

Let $\alpha$ and $\beta$ be the roots of the equation $5 x^{2}+6 x-2=0 .$ If $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ then :

  • [JEE MAIN 2020]