સમીકરણ $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$ ના વાસ્તવિક ઉકેલોની સંખ્યા $.............$ છે.
$4$
$0$
$3$
$2$
સમીકરણ $e^{\sin x}-2 e^{-\sin x}=2$ ના ઉકેલોની સંખ્યા મેળવો.
જો સમીકરણ $y = ax^2 -bx + c$ નો ગ્રાફ નીચે મુજબ હોય તો $a$, $b$, $c$ ના ચિહ્નો અનુક્રમે ......... થાય
જો $a$ ,$b$, $c$ , $d$ , $e$ એ પાંચ સંખ્યાઓ સમીકરણ સંહિતાઓ ને સંતોષે
$2a + b + c + d + e = 6$
$a + 2b + c + d + e = 12$
$a + b + 2c + d + e = 24$
$a + b + c + 2d + e = 48$
$a + b + c + d + 2e = 96$ ,
તો $|c|$ ની કિમત મેળવો
જો $\alpha $ અને $\beta $ એ દ્રીઘાત સમીકરણ ${x^2}\,\sin \,\theta - x\,\left( {\sin \,\theta \cos \,\,\theta + 1} \right) + \cos \,\theta = 0\,\left( {0 < \theta < {{45}^o}} \right)$ ના ઉકેલો હોય અને $\alpha < \beta $ તો $\sum\limits_{n = 0}^\infty {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ = ......
જો સમીકરણ ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ ના બીજનો ગુણાકાર $7$ હોય તો તેમના બીજ વાસ્તવિક છે કે જયાં