$\lambda $ ની કેટલી વાસ્તવિક કિમંતો માટે સમીકરણો $2x + 4y - \lambda z = 0$ ;$4x + \lambda y + 2z = 0$ ; $\lambda x + 2y+ 2z = 0$ ને અનંત ઉકેલ મળે.
$0$
$1$
$2$
$3$
જો $\alpha $ અને $\beta $ એ સમીકરણ $x^2 + x + 1 = 0$ ના બીજ હોય તો $y (\ne 0) \in R$ માટે $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$ મેળવો.
જો રેખીય સમીકરણો $2x + 2y + 3z = a$ ; $3x - y + 5z = b$ ; $x - 3y + 2z = c$ કે જ્યાં $a, b, c$ એ શૂન્યતર વાસ્તવિક સંખ્યા છે તો સમીકરણોને એક કરતાં ઉકેલ માટે . . ..
જો રેખીય સમીકરણો $x - 4y + 7z = g,\,3y - 5z = h, \,-\,2x + 5y - 9z = k$ એ સુસંગત હોય તો . . .
$x$ ની . . . કિમત માટે $\left| {\,\begin{array}{*{20}{c}}{ - x}&1&0\\1&{ - x}&1\\0&1&{ - x}\end{array}\,} \right| = 0$ મળે.
સુરેખ સમીકરણોની સંહતિ $x+2 y+3 z=1$ ; $3 x+4 y+5 z=\mu$ ; $4 x+4 y+4 z=\delta$ એ સુસંગત ન હોય તો $(\mu, \delta)$ ની કર્મયુક્ત જોડ મેળવો.