$\lambda$ के उन वास्तविक मानों की संख्या जिनके लिए रैखिक समीकरण निकाय $2 x+4 y-\lambda z=0$; $4 x+\lambda y+2 z=0$; $\lambda x+2 y+2 z=0$ के अनंत हल हैं
$0$
$1$
$2$
$3$
यदि किसी समान्तर श्रेणी के $p$ वें, $q$ वें तथा $r$ वें पद क्रमश: $a,b,c$ हों, तो $\left| {\,\begin{array}{*{20}{c}}a&p&1\\b&q&1\\c&r&1\end{array}\,} \right| = $
माना रैखिक समीकरण निकाय $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ के अनंत हल है, तो निकाय $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10$
यदि $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$ है, तो $\lambda, \frac{\lambda}{3}$ किस समीकरण के मूल हैं ?
सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$
माना $\mathrm{A}_1, \mathrm{~A}_2, \mathrm{~A}_3$ तीन A.P. है, जिनका सार्वअंतर $\mathrm{d}$ है तथा जिनके पहले पद क्रमशः $\mathrm{A}, \mathrm{A}+1, \mathrm{~A}+2$, है। माना $\mathrm{A}_1, \mathrm{~A}_2, \mathrm{~A}_3$ के $7$ वाँ, $9$ वाँ व $17$ वाँ पद क्रमश: $a, b, c$ है तथा $\left|\begin{array}{lll}\mathrm{a} & 7 & 1 \\ 2 \mathrm{~b} & 17 & 1 \\ \mathrm{c} & 17 & 1\end{array}\right|+70=0$ है। यदि $\mathrm{a}=29$, है, तो उस $AP$ जिसका पहला पद $\mathrm{c}-$ $\mathrm{a}-\mathrm{b}$ है तथा सार्वअंतर $\frac{\mathrm{d}}{12}$ है, के प्रथम $20$ पदों का योग बराबर ____________ है।