વાસ્તવિક સંખ્યા $k$ ની કેટલી કિમત માટે વાસ્તવિક સહગુણકો ધરાવતા સમીકરણ ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ નો માત્ર એક્જ ઉકેલ મળે.
$2$
$1$
$4$
એકપણ નહી.
સરવાળો $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}= ..............$
જો ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, તો $a$ અને $b$ વચ્ચેનો સંબંધ મેળવો.
જો ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0$ તો $x = . . . .$
જો ${\log _{10}}x + {\log _{10}}\,y = 2$ હોય તો $(x + y)$ ની ન્યૂનતમ શકય કિમત મેળવો
$\sqrt {(\log _{0.5}^24)} = . . $. .