समीकरण $|x{|^2} - 7|x| + 12 = 0$ के मूलों की संख्या है
$1$
$2$
$3$
$4$
यदि वास्तविक संख्याएँ $a, b, c$ इस प्रकार है कि $a+b+c=0$ तथा $a^2+b^2+c^2=1$, तब $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2+(5 a-8 b+3 c)^2$ निम्नलिखित के बराबर है
समीकरण $\left(e^{2 x}-4\right)\left(6 e^{2 x}-5 e^x+1\right)=0$के सभी वास्तविक मूलों का योगफल होगा
इन दो कथनों पर विचार करें :
$I$. दो चरों वाले संगत रेखीय समीकरणों $(consistent\,linear\,equations)$ के किसी भी युग्म का अद्वितीय हल है।
$II$. ऐसे दो क्रमागत पूर्णांकों का अस्तित्व नहीं हैं जिनके वर्गों का योग $365$ है।
यदि किसी धनपूर्णांक $n$ के लिए, द्विघाती समीकरण
$x(x+1)+(x+1)(x+2)+\ldots+(x+\overline{n-1})(x+n)=10 n$
के दो क्रमिक पूर्णांकीय हल है, तो $n$ बराबर है :
मान लीजिए कि $m , n$ धनात्मक पूर्णांक $(positive\,integers)$ इस प्रकार है कि $6^m+2^{m+n} 3^m+2^n=332 . m^2+m n+n^2$ व्यंजक $(expression)$, का मान क्या होगा ?