समीकरण ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}$में $x$ का मान होगा
$\frac{4}{3}$
$\frac{3}{2}$
$\frac{2}{1}$
$\frac{5}{3}$
बहुपद समीकरण $x^4-x^2+2 x-1=0$ के वास्तविक मूलों की संख्या है:
समीकरण |${x^2}$ + 4x + 3| + 2x + 5 = 0 के वास्तविक हलों की संख्या है
यदि $x$ वास्तविक है, तो व्यंजक $\frac{{{x^2} - 3x + 4}}{{{x^2} + 3x + 4}}$ के अधिकतम एवं न्यूनतम मान है
माना $\alpha=\max _{x \in R }\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ तथा $\beta=\min _{ n \in R }\left\{8^{2 \sin 3 n } \cdot 4^{4 \cos 3 x }\right\}$ हैं। यदि द्विघातीय समीकरण $8 x ^{2}+ bx + c =0$ के मूल $\alpha^{1 / 5}$ तथा $\beta^{1 / 5}$ है, तो $c - b$ का मान बराबर है
माना कि $f(x)=x^4+a x^3+b x^2+c$ वास्तविक गुणांकों (real coefficients ) वाला एक ऐसा बहुपद (polynomial) है कि $f(1)=-9$ है। मान लीजिये कि $i \sqrt{3}$, समीकरण $4 x^3+3 a x^2+2 b x=0$ का एक मूल है, जहां $i=\sqrt{-1}$ है। यदि $\alpha_1, \alpha_2, \alpha_3$, और $\alpha_4$, समीकरण $f(x)=0$ के सभी मूल हैं, तब $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ का मान. . . . . है।