Gujarati
4-2.Quadratic Equations and Inequations
hard

समीकरण ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}$में $x$ का मान होगा

A

$\frac{4}{3}$

B

$\frac{3}{2}$

C

$\frac{2}{1}$

D

$\frac{5}{3}$

Solution

(b) समीकरण ${4^x} – {3^{x – \frac{1}{2}}} = {3^{x + \frac{1}{2}}} – {2^{2x – 1}}$

==>${2^{2x}} + {2^{2x – 1}} = {3^{x + \frac{1}{2}}} + {3^{x – \frac{1}{2}}}$

==>${2^{2x}}\left( {1 + \frac{1}{2}} \right) = {3^{x – \frac{1}{2}}}(1 + 3)$

==> ${2^{2x}}.\frac{3}{2} = {3^{x – \frac{1}{2}}}.4$ $⇒ {2^{2x – 3}} = {3^{x – \frac{3}{2}}}$

दोनों तरफ लघुगणक लेने पर

==> $(2x – 3)\log 2 = (x – 3/2)\log 3$

==> $2x\log 2 – 3\log 2 = x\log 3 – \frac{3}{2}\log 3$

==>$x\log 4 – x\log 3 = 3\log 2 – \frac{3}{2}\log 3$

==> $x\log \left( {\frac{4}{3}} \right) = \log 8 – \log 3\sqrt 3 $

==>${\left( {\frac{4}{3}} \right)^x} = \frac{8}{{3\sqrt 3 }}$

$⇒ {\left( {\frac{4}{3}} \right)^x} = {\left( {\frac{4}{3}} \right)^{3/2}}$

$\therefore \,\,x = \frac{3}{2}$

ट्रिक: समीकरण को विकल्पों से जाँच करने पर केवल विकल्प $(b)$ सन्तुष्ट करता है।

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.