- Home
- Standard 11
- Mathematics
समीकरण ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}$में $x$ का मान होगा
$\frac{4}{3}$
$\frac{3}{2}$
$\frac{2}{1}$
$\frac{5}{3}$
Solution
(b) समीकरण ${4^x} – {3^{x – \frac{1}{2}}} = {3^{x + \frac{1}{2}}} – {2^{2x – 1}}$
==>${2^{2x}} + {2^{2x – 1}} = {3^{x + \frac{1}{2}}} + {3^{x – \frac{1}{2}}}$
==>${2^{2x}}\left( {1 + \frac{1}{2}} \right) = {3^{x – \frac{1}{2}}}(1 + 3)$
==> ${2^{2x}}.\frac{3}{2} = {3^{x – \frac{1}{2}}}.4$ $⇒ {2^{2x – 3}} = {3^{x – \frac{3}{2}}}$
दोनों तरफ लघुगणक लेने पर
==> $(2x – 3)\log 2 = (x – 3/2)\log 3$
==> $2x\log 2 – 3\log 2 = x\log 3 – \frac{3}{2}\log 3$
==>$x\log 4 – x\log 3 = 3\log 2 – \frac{3}{2}\log 3$
==> $x\log \left( {\frac{4}{3}} \right) = \log 8 – \log 3\sqrt 3 $
==>${\left( {\frac{4}{3}} \right)^x} = \frac{8}{{3\sqrt 3 }}$
$⇒ {\left( {\frac{4}{3}} \right)^x} = {\left( {\frac{4}{3}} \right)^{3/2}}$
$\therefore \,\,x = \frac{3}{2}$
ट्रिक: समीकरण को विकल्पों से जाँच करने पर केवल विकल्प $(b)$ सन्तुष्ट करता है।