माना $\lambda \in \mathbb{R}$ है तथा माना समीकरण $\mathrm{E}:|\mathrm{x}|^2-2|\mathrm{x}|+|\lambda-3|=0$ है। तो समुच्चय $\mathrm{S}=\{\mathrm{x}+\lambda: \mathrm{x}, \mathrm{E}$ का एक पूर्णांक हल है $\}$ में सबसे बड़ा अवयव है______________.
$4$
$3$
$5$
$2$
समीकरण $|x{|^2} - 7|x| + 12 = 0$ के मूलों की संख्या है
मान लीजिए कि $r$ वास्तविक संख्या $(real\,rumber)$ है और $n \in N$ इस प्रकार है कि $2 x^2+2 x+1$ बहुपद $(x+1)^n-r$ बहुपद को विभाजित करता है तो $(a, r)$ का मान हो सकता है--
यदि $\alpha$ तथा $\beta$, समीकरण $x ^{2}+(3)^{1 / 4} x +3^{1 / 2}=0$ के दो भिन्न मूल हैं, तो $\alpha^{96}\left(\alpha^{12}-1\right)+\beta^{96}\left(\beta^{12}-1\right)$ का मान बराबर है
समीकरण ${x^3} + 3Hx + G = 0$ में यदि $G$ तथा $H$ वास्तविक हों और ${G^2} + 4{H^3} > 0,$ तब मूल होंगे
एक रेलवे प्लेटफॉर्म की लंबाई $88$ मीटर है । प्लेटफॉर्म पर खड़े एक व्यक्ति ने देखा कि रेल गाड़ी को प्लेटफॉर्म को पूरी तरह पार करने में $21$ सेकंड लगे । इसका मतलब है कि इंजन के प्लेटफॉर्म पर प्रवेश करने से लेकर अंतिम डिब्बे के प्लेटफॉर्म छोड़े तक में बीता समय । उसने यह भी देखा कि रेल गाड़ी के उसे पार करने में $9$ सेकंड लगाए । यदि रेल गाड़ी एक समान गति से चल रही थी, तो रेल गाड़ी की लंबाई होगी (मीटर में)