यदि $x$ वास्तविक है, तो व्यंजक $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ निम्न अंतराल में समस्त मानों को ग्रहण करता है
$\left( {\frac{1}{{13}},\frac{1}{3}} \right)$
$\left[ { - \frac{1}{{13}},\frac{1}{3}} \right]$
$\left( { - \frac{1}{3},\frac{1}{{13}}} \right)$
इनमें से कोई नहीं
यदि $\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$ तो
माना समीकरण $3^{ x }\left(3^{ x }-1\right)+2=\left|3^{ x }-1\right|+\left|3^{ x }-2\right|$ के सभी वास्तविक मूलों का समुच्चय $S$ है। तो $S$
यदि ${x^3} + 8 = 0$ के मूल $\alpha ,\,\beta$ तथा $\gamma $ हैं, तो वह समीकरण जिसके मूल ${\alpha ^2},{\beta ^2}$ तथा ${\gamma ^2}$ है, होगा
दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y^2=x^2+y=12$ एसे कितने वास्तविक क्रमित युग्म $(x, y)$ हैं जो इनके हल हैं?
यदि $x$ धनात्मक है तो $5 + 4x - 4{x^2}$ का अधिकतम मान होगा