यदि $x$ वास्तविक है, तो व्यंजक $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ निम्न अंतराल में समस्त मानों को ग्रहण करता है
$\left( {\frac{1}{{13}},\frac{1}{3}} \right)$
$\left[ { - \frac{1}{{13}},\frac{1}{3}} \right]$
$\left( { - \frac{1}{3},\frac{1}{{13}}} \right)$
इनमें से कोई नहीं
समीकरण $x^5-6 x^4+11 x^3-5 x^2-3 x+2=0$ के सभी अपूर्णांक मूलों का योग है
मान लीजिये कि $a, b, c$ शुन्येतर $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $a+b+c=01$ यदि $q=a^2+b^2+c^2$ तथा $r=a^4+b^4+c^4$ हो तो, निम्नलिखित में से कौन सा कथन आवश्यक रूप से सही है?
समीकरण $\mathrm{e}^{4 \mathrm{x}}+8 \mathrm{e}^{3 \mathrm{x}}+13 \mathrm{e}^{2 \mathrm{x}}-8 \mathrm{e}^{\mathrm{x}}+1=0, \mathrm{x} \in \mathbb{R}:$
यदि $x, y$ वास्तविक संख्याएं $(real\,numbers)$ इस प्रकार हैं कि $3^{\frac{x}{y}+1}-3^{\frac{x}{y}-1}=24$ तो $(x+y) /(x-y)$ का मान $(value)$ क्या होंगे ?
माना $p , q$ तथा $r ,( p \neq q , r \neq 0)$, वास्तविक संख्याएँ ऐसी हैं कि समीकरण $\frac{1}{x+ p }+\frac{1}{x+ q }=\frac{1}{ r }$ के मूल बराबर तथा विपरीत चिन्हों के हैं, तो इन मूलों के वर्गों का योगफल बराबर है