Trigonometrical Equations
medium

यदि $\sin \theta  + \cos \theta  = 1$, तो $\theta $ का व्यापक मान

A

$2n\pi $

B

$n\pi + {( - 1)^n}\frac{\pi }{4} - \frac{\pi }{4}$

C

$2n\pi + \frac{\pi }{2}$

D

इनमें से कोई नहीं

(IIT-1981)

Solution

$\sin \theta  + \cos \theta  = 1 $

$\Rightarrow \frac{1}{{\sqrt 2 }}\sin \theta  + \frac{1}{{\sqrt 2 }}\cos \theta  = \frac{1}{{\sqrt 2 }}$

$\sqrt {{1^2} + {1^2}}  = \sqrt 2 $ से भाग देने पर,

$\sin \left( {\theta  + \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }} = \sin \frac{\pi }{4}$

$ \Rightarrow $ $\theta  + \frac{\pi }{4} = n\pi  + {( – 1)^n}\frac{\pi }{4} $

$\Rightarrow \theta  = n\pi  + {( – 1)^n}\frac{\pi }{4} – \frac{\pi }{4}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.