જો $f(x)={{x}^{2}}-x+k-2,k\in R$ હોય તો $k$ ની કિમતોનો ગણ મેળવો કે જેથી $y=\left| f\left( \left| x \right| \right) \right|$ ને બિન્ન $5$ બિંદુઓ પર વિકલનીય ન થાય
સમીકરણ $ln(lnx)$ = $log_xe$ ના કેટલા ઉકેલો મળે?
જો ${\rm{x}}$ બરાબર શું થાય, તો $\frac{{8{x^2}\, + \,16x\, - \,51}}{{(2x - \,3)\,(x\, + \,4)}}\, > \,3\,\, = \,\,\,......$
સમીકરણ $\frac{{p + q - x}}{r} + \frac{{q + r - x}}{p}\,\, + \,\,\frac{{r + p - x}}{q}\,\, + \;\,\frac{{4x}}{{p + q + r}} = 0$ ને ઉકેલ........છે
ધારોકે $p$ અને $q$ બે એવી વાસ્તવિક સંખ્યાઓ છે કે જેથી $p+q=3$ અને $p^{4}+q^{4}=369$. તો $\left(\frac{1}{p}+\frac{1}{q}\right)^{-2}=$