- Home
- Standard 11
- Mathematics
Trigonometrical Equations
easy
જો $0 < \theta < 2\pi $ આપેલ હોય તો સમીકરણ $\tan \theta + \sec \theta = \sqrt 3 ,$ ના ઉકેલની સંખ્યા મેળવો.
A
$0$
B
$1$
C
$2$
D
$3$
Solution
(c) $\sec \theta + \tan \theta = \sqrt 3 $….$(i)$
Also we have ${\sec ^2}\theta – {\tan ^2}\theta = 1$…$(ii)$
$ \Rightarrow $ $\sec \theta – \tan \theta = \frac{1}{{\sqrt 3 }}$…$(iii)$
Now $(i)$ and $(iii)$ gives,
$\tan \theta = \frac{1}{2}\left( {\sqrt 3 – \frac{1}{{\sqrt 3 }}} \right) = \frac{1}{{\sqrt 3 }} = \tan \left( {\frac{\pi }{6}} \right)$
$ \Rightarrow $ $\theta = n\pi + \frac{\pi }{6}$.
$\therefore $ Solutions for $0 \le \theta \le 2\pi $ are $\frac{\pi }{6}$ and $\frac{{7\pi }}{6}$.
Hence there are two solutions.
Standard 11
Mathematics