समीकरण $\sin \left(\pi \sin ^2(\theta)\right)+\sin \left(\pi \cos ^2(\theta)\right)=2 \cos \left(\frac{\pi}{2} \cos (\theta)\right)$ के हलों की कुल संख्या जो $0 \leq \theta \leq 2 \pi$ को संतुष्ट करती है निम्न है।
$1$
$2$
$4$
$7$
यदि $X=\{x \in R : \cos (\sin x)=\sin (\cos x)\}$, तो $X$ में कुल अवयवों की संख्या
यदि ${\sin ^2}\theta + \sin \theta = 2$, तो $\theta $ का व्यापक मान होगा
निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\sec ^{2} 2 x=1-\tan 2 x$
$\sin 7\theta = \sin 4\theta - \sin \theta $ तथा $0 < \theta < \frac{\pi }{2}$ को सन्तुष्ट करने वाले $\theta $ के मान हैं
यदि $\frac{{\tan 3\theta - 1}}{{\tan 3\theta + 1}} = \sqrt 3 $, तो $\theta $ का व्यापक मान है