दिये गए समीकरण $\cos ^4 x+\frac{1}{\cos ^2 x}=\sin ^4 x+\frac{1}{\sin ^2 x}$ के अंतराल $[0,2 \pi]$ में कितने समाधान होंगे ?
$6$
$4$
$2$
$0$
समीकरण $\sin x + \sin y + \sin z = - 3$, $0 \le x \le 2\pi ,$ $0 \le y \le 2\pi ,$ $0 \le z \le 2\pi $ के लिए रखता है
समीकरणों $2{\sin ^2}x + {\sin ^2}2x = 2$ व $\sin 2x + \cos 2x = \tan x,$ के उभयनिष्ठ मूल हैं
किसी पूर्णांक $n$ के लिये, $\sin x - \cos x = \sqrt 2 $ का व्यापक हल है
किसी त्रिभुज के कोण $\alpha, \beta, \gamma$ समीकरण $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ और $3 \sin \beta+2 \cos \alpha=1$ को संतुष्ट करते हैं। तब कोण $\gamma$ है -
यदि $\sin 2x + \sin 4x = 2\sin 3x,$ तब $x = $