समीकरण $\sin x=\frac{\sqrt{3}}{2}$ का मुख्य हल ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that, $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$ and $\sin \frac{2 \pi}{3}=\sin \left(\pi-\frac{\pi}{3}\right)=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$

Therefore, principal solutions are $x=\frac{\pi}{3}$ and $\frac{2 \pi}{3}$.

Similar Questions

हल कीजिए $\sin 2 x-\sin 4 x+\sin 6 x=0$

समीकरण  $3\cos x + 4\sin x = 6$ रखता है

यदि $|k|\, = 5$ तथा ${0^o} \le \theta  \le {360^o}$, तब 3$\cos \theta  + 4\sin \theta  = k$ के विभिन्न हलों की संख्या होंगी

$\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ का व्यापक हल है

  • [IIT 1989]

समीकरण $\tan \theta  + \tan \left( {\frac{\pi }{2} - \theta } \right) = 2$ को संतुष्ट करने वाला $\theta $ का व्यापक मान है