ગણ $\{1,2,3,4\}$ પરના સ્વવાચક ન હોય તેવા સંમિત સંબંધોની સંખ્યા ........................છે. 

  • [JEE MAIN 2024]
  • A

    $950$

  • B

    $940$

  • C

    $960$

  • D

    $965$

Similar Questions

સાબિત કરો કે ગણ $A=\{x \in Z: 0 \leq x \leq 12\},$ પર વ્યાખ્યાયિત નીચે દર્શાવેલ પ્રત્યેક સંબંધ $R$,એ સામ્ય સંબંધ છે. તથા  $1$ સાથે સંબંધ $R$ ધરાવતા ઘટકોનો ગણ શોધો.

$R =\{( a , b ): a = b \}$

જો $R$ અને $S$ એ ગણ $A$ પરના સામ્ય સંબંધ હોય તો

ગણ $A\, = \,\{ x\,:\,\left| x \right|\, < \,3,\,x\, \in Z\} $ કે જ્યાં $Z$ એ પૃણાંક સંખ્યા નો ગણ છે ,તેના પરનો સંબંધ $R= \{(x, y) : y = \left| x \right|, x \ne  - 1\}$ આપેલ હોય તો $R$ ના ઘાતગણમાં રહેલ સભ્ય સંખ્યા મેળવો.

  • [JEE MAIN 2014]

ધારો કે ગણ $A = A _{1} \cup A _{2} \cup \ldots \cup A _{k}$ છે. જ્યાં $i \neq j, 1 \leq i, j \leq k$ માટે $A _{i} \cap A _{i}=\phi$ છે. $A$ થી $A$ પરનો સંબંધ $R$ એ $R =\left\{(x, y): y \in A _{i}\right.$ તો અને તો જ $\left.x \in A _{i}, 1 \leq i \leq k\right\}$ પ્રમાણે વ્યાખ્યાયિત કરો.તો $R$ એ :

  • [JEE MAIN 2022]

ધારો કે $A=\{2,3,6,7\}$ અને $B=\{4,5,6,8\}$. ધારો કે $R$ એ $A \times B$ પર ' $\left(a_1, b_1\right) R\left(a_2, b_2\right)$ તો અને તોજ $a_1+a_2=b_1+b_2^{\prime}$ વડે વ્યાખ્યાયિત સંબંધ છે, તો $R$ માં સભ્યોની સંખ્યા............. છે. 

  • [JEE MAIN 2024]