किसी समांतर श्रेढ़ी में पदों की संख्या सम है। इसके विषम पदों का योग $24$ है तथा सम पदों का योग $30$ है। यदि अंतिम पद, प्रथम पद से $10 \frac{1}{2}$ अधिक है, तो समांतर श्रेढ़ी में पदों की संख्या है
$4$
$8$
$12$
$16$
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=(-1)^{n-1} 5^{n+1}$
माना भिन्न पदों वाली समांतर श्रेढ़ी (non-constant $A.P.$) $a _{1}, a _{2}$, $a _{3}, \ldots \ldots \ldots \ldots . . .$ के प्रथम $n$ पदों का योगफल $50 n +\frac{ n ( n -7)}{2} A$ है, जहाँ $A$ एक अचर है। यदि इस समांतर श्रेढ़ी का सार्वअंतर $d$ है, तो क्रमित युग्म $\left( d , a _{50}\right)$ बराबर है $:$
यदि $m$ समान्तर श्रेणियों के $n$ पदों के योग क्रमश: ${S_1},\;{S_2},\;{S_3},$……${S_m}$ हैं और इनके प्रथम पद $1,\;2,\;3,$…..$,m$ और सार्वअन्तर क्रमश: $1,\;3,\;5,$……$2m - 1$ हों, तो ${S_1} + {S_2} + {S_3} + ....... + {S_m}$ का मान है
दो समान्तर श्रेणियों के $n$ पदों के योग का अनुपात $(7n + 1):(4n + 27)$ है, तो इनके $11$ वें पदों का अनुपात होगा
मान लें कि $a_n$, एक अंकगणितीय श्रेढ़ी $(arithmetic\,progression)$ है, जहाँ $n \geq 1$ है और इस श्रेढ़ी का पहला पद $2$ और सार्व अंतर $(common\,difference)$ $4$ है। मान लें कि $M_n$ पहले $n$ पदों का औसत है, तब योग $\sum \limits_{n=1}^{10} M_n$ क्या होगा ?